A multilevel framework for sparse optimization with application to inverse covariance estimation and logistic regression
نویسندگان
چکیده
Solving l1 regularized optimization problems is common in the fields of computational biology, signal processing and machine learning. Such l1 regularization is utilized to find sparse minimizers of convex functions. A well-known example is the LASSO problem, where the l1 norm regularizes a quadratic function. A multilevel framework is presented for solving such l1 regularized sparse optimization problems efficiently. We take advantage of the expected sparseness of the solution, and create a hierarchy of problems of similar type, which is traversed in order to accelerate the optimization process. This framework is applied for solving two problems: (1) the sparse inverse covariance estimation problem, and (2) l1-regularized logistic regression. In the first problem, the inverse of an unknown covariance matrix of a multivariate normal distribution is estimated, under the assumption that it is sparse. To this end, an l1 regularized log-determinant optimization problem needs to be solved. This task is challenging especially for large-scale datasets, due to time and memory limitations. In the second problem, the l1-regularization is added to the logistic regression classification objective to reduce overfitting to the data and obtain a sparse model. Numerical experiments demonstrate the efficiency of the multilevel framework in accelerating existing iterative solvers for both of these problems.
منابع مشابه
Optimization Methods for Sparse Pseudo-Likelihood Graphical Model Selection
Sparse high dimensional graphical model selection is a popular topic in contemporary machine learning. To this end, various useful approaches have been proposed in the context of `1-penalized estimation in the Gaussian framework. Though many of these inverse covariance estimation approaches are demonstrably scalable and have leveraged recent advances in convex optimization, they still depend on...
متن کاملMissing values: sparse inverse covariance estimation and an extension to sparse regression
We propose an l1-regularized likelihood method for estimating the inverse covariance matrix in the high-dimensional multivariate normal model in presence of missing data. Our method is based on the assumption that the data are missing at random (MAR) which entails also the completely missing at random case. The implementation of the method is non-trivial as the observed negative log-likelihood ...
متن کاملSparse inverse kernel Gaussian Process regression
Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to lar...
متن کامل0 Sparse Inverse Covariance Estimation
Recently, there has been focus on penalized loglikelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting “norm” is the non-convex l0 penalty but its lack ...
متن کاملThe picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R
We describe an R package named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (Sparse Linear Regression, Sparse Logistic Regression and Sparse Column Inverse Operator), combined with distinct active set identification schemes (truncated cyclic, greedy, randomized and proximal gradient selection). Besides, the package p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016